A methodology for dynamic data mining based on fuzzy clustering
نویسندگان
چکیده
Dynamic data mining is increasingly attracting attention from the respective research community. On the other hand, users of installed data mining systems are also interested in the related techniques and will be even more since most of these installations will need to be updated in the future. For each data mining technique used, we need di1erent methodologies for dynamic data mining. In this paper, we present a methodology for dynamic data mining based on fuzzy clustering. Using the implementation of the proposed system we show its bene4ts in two application areas: customer segmentation and tra6c management. c © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملA clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting
This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 150 شماره
صفحات -
تاریخ انتشار 2005